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Abstract 
 

Salp Swarm Algorithm (SSA) is a new nature-inspired swarm optimization algorithm that 
mimics the swarming behavior of salps navigating and foraging in the oceans. SSA has been 
proved to enable to avoid local optima and enhance convergence speed benefiting from the 
adaptive nonlinear mechanism and salp chains. In this paper, visual tracking is considered to 
be a process of locating the optimal position through the interaction between leaders and 
followers in successive images. A novel SSA-based tracking framework is proposed and the 
analysis and adjustment of parameters are discussed experimentally. Besides, the qualitative 
analysis and quantitative analysis are performed to demonstrate the tracking effect of our 
proposed approach by comparing with ten classical tracking algorithms. Extensive 
comparative experimental results show that our algorithm has good performance in visual 
tracking, especially for abrupt motion tracking.  
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1. Introduction 

Over the past few decades, visual tracking has become very popular in machine vision and 

related fields, which enjoys inclusive applications, including security and video surveillance, 
traffic monitoring, video analysis, to name a few. Although visual tracking research has 
achieved remarkable advances, there are still many challenging issues, such as illumination 
variation, partial occlusions, fast motion, etc. Researchers make most effort to design a 
tracker for copping these challenges, which can be divided into generative trackers [1-4] and 
discriminative trackers [5-8]. In recent years, trackers based on Correlation Filter (CF) [9-11] 
and Deep Learning (DL) [12-13] had successfully been proposed and these methods promote 
the rapid development of visual tracking. 

Most of these methods hypothesize that the target has the circumstance of smooth motion, 
then trackers search for the target in the region near the position of the last frame. However, 
these assumptions are not always valid. Abrupt and uncertain motion occurs frequently 
because of intense motions. In this case, there is a high probability that the target gets away 
from the region. 

Aiming at above problems, a direct method is that enlarging the region to fully cover the 
motion uncertainty. Nevertheless, exhaustive search is extremely time-consuming due to the 
existence of a large search space in visual tracking. Thence, an effective search method is 
crucial to reducing workloads. The swarm optimization algorithms as a kind of search 
strategy combine global exploration with local exploit to achieve global optimization, and 
have received extent attention. Some researchers have proposed trackers based on swarm 
optimization algorithm [14-18] and achieved good results.  

Recently, Mirjalili et al. [19] proposes a novel nature-inspired swarm optimization 
algorithm called Salp Swarm Algorithm (SSA), which imitates the foraging behavior of salp 
chains in the ocean. The merits of SSA are due to the adaptive nonlinear mechanism and salp 
chains. Leaders always explore the surrounding space of food and followers can exploit the 
local space. In addition, one main controlling parameter has the ability to balance exploration 
and exploitation. The SSA based on adaptive nonlinear mechanism is capable to avoid local 
solutions and enhance convergence speed. 

In this paper, visual tracking is seen as an optimization process of searching for the target 
in the search space using SSA. The SSA tracker is utilized to solve the problem of abrupt 
motion. The algorithm based on SSA presents a new tracking framework. And the analysis 
and adjustment of parameters in SSA are discussed experimentally. It is worth noting that 
SSA is first introduced into visual tracking. The extensive comparative experimental results 
demonstrate the new tracker better performance than other representational approaches. 
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2. Related work 

This section only reviews the most relational tracking methods for dealing with abrupt 
motion. 
Non-Swarm optimization based trackers for solving abrupt motion: Aiming at the 
problem of unsatisfactory tracking results when undergoing abrupt motion in numerous 
popular tracking methods. Zhang et al. [9] used simulated annealing (SA) to improve the 
tracking effect of the Kernelized Correlation Filters (KCF) with ability of global 
optimization. When traditional KCF fails to track between image sequences, the SA 
mechanism is activated to provide a more reliable image patch to go for better tracking 
results. Su et al. [20] presented an improved visual saliency model and integrated it to a 
particle filter tracker to tackle the problem of abrupt motion. Zhou et al. [21] proposed to 
utilize the stochastic approximation Monte Carlo (SAMC) sampling approach in the 
Bayesian filter tracking architecture and integrate a new Markov-chain Monte Carlo (MCMC) 
to solve abrupt motion tracking. For abrupt motions in conventional tracking methods, 
Zhang et al. [4] put forward a sparse representation based on the tracking architecture, which 
integrates a novel Scale-invariant feature transform (SIFT) flow tracker (SFT). 
Swarm optimization based trackers for solving abrupt motion: In order to solve the 
problem of abrupt motion tracking, many tracking methods based on swarm optimization 
algorithms have been proposed. Zhang et al. [14] proposed a sequential particle swarm 
optimization-based tracking framework via introducing the temporal continuity information 
into the traditional PSO algorithm. In the proposed algorithm, the parameters based on the 
fitness values of the particles are dynamically updated, which control the movement of the 
particles in the swarm and numerous experimental results proved the improved method is 
more effective and robust, especially for arbitrary motion. Lim et al. [22] combined a 
sampling strategy based on swarm optimization and the Dynamic Acceleration Parameters 
(DAP) strategy within the PSO framework to represent a new tracking approach to solve 
abrupt motion. Due to the existence of a swarm intelligence algorithm namely cuckoo search 
(CS) with better capabilities in global search, Zhang et al. [23] proposed an improved cuckoo 
search-based KCF tracker (ECSKCF) to further improve the tracking effect of traditional 
KCF for abrupt motion. Gao et al. [18] introduced a powerful approach named bat algorithm 
(BA) to deal with various global optimization problems and BA had successfully solved 
many challenging issues in visual tracking. Zhang et al. [24] presented a new Moth-flame 
optimization algorithm (MFO)-based visual tracking method. In this work, the spiral flight of 
moths and the mechanism that reduces the number of flames gradually were employed to 
enhance tracking capabilities. 
 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 3, March 2020            1145 

3. Salp swarm algorithm 

SSA is a bio-inspired optimization algorithm proposed by Mirjalili et al. [19]. This algorithm 
is proposed by observing the swarming behavior called salp chains. The natural behaviors 
are presented by mathematically modeling the salp chains. First of all, the population of 
salps is divided to two groups: leaders and followers. The division of leaders and followers is 
on the basis of sorting results which are obtained by the fitness function. Usually, the leaders 
lead the chain toward a moving food source and the followers follow. During the salp chains 
moving in the search space, leaders perform the global search and followers implement the 
local search within their own scope. 

3.1 The model hypothesis 

In a x -dimensional search space, similar to other swarm optimization techniques, the 
positions of salps are defined and x  denotes the number of variables of a considered 
problem. Thence, a two-dimensional matrix named P  includes the positions of all salps. At 
the same time, we assume that there is a food source named F  in the search space as the 
chased target of the salp chains. Specifically, F  is defined as the best position found until 
the current iteration. 

3.2 The update of leaders position 

The leaders will perform adaptive position update around the food source F . The 
position of the leader the following equation is proposed: 

( )( )
( )( )

1 2 3

1 2 3
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where i
jP  denotes the position of the ith salp of leaders in the jth dimension. 1L  denotes 

the number of leaders. jF  is the location of the food source in the jth dimension, jub  

indicates the upper bound of jth dimension, jlb  indicates the lower bound of jth dimension, 

1c , 2c  and 3c  are random numbers. 2c  and 3c  are both generated in the interval of [0,1] 

at each iteration. What’s more, they decide the next direction and step size for leaders. 
 

3. 3 The update of followers position 

According to Newton’s law of motion, the following equation for updating the position is 
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utilized: 

                   2
0

1 ( 1 1, 1 2,..., )
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where 1i L> , i
jP  denotes the location of ith salp of followers in jth dimension, n  denotes 

the total number of salps including leaders and followers, t  is time, 0v  is the initial speed, 

and 0a v v
t

=
−  where 0p pv

t
−

= . 

Because the time is iteration in optimization algorithm, the discrepancy between iteration 

is equal to 1, and considering 0 0v = , the Eq.2 can be expressed as follows: 

                  11 ( ) ( 1 1, 1 2,..., )
2
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where 1i L> , i
jP  on the left side of the equation denotes the position of ith salp of 

followers in jth dimension in this iteration, i
jP  and 1i

jP −  on the right side of the equation 

indicate the position of ith salp of followers in jth dimension and the position of i-1th salp of 
followers in jth dimension in the last iteration, 

3. 4 The nonlinear model and the proportional model 

As mentioned above, Eq.1 indicates that the update of leaders’ position is only related to 

the location of the food source F . The random 1c  is described by construct a nonlinear 

model. What’s more, the nonlinear parameter mechanism can balance exploitation and 

exploration in the search space. Therefore, the coefficient 1c  is defined as follows: 

2( )

1

bl
Lc ae

−
=                             (4) 

where, l  is the current iteration, L  is the maximum number of iterations, a  and b are 
constant parameters of the nonlinear model. 
  The population size of salps n  is divided into leaders ( 1L ) and followers ( 1n L− ). 
According to Eq.1, Eq.3 and Eq.4, the behavior of leaders and followers plays an important 
role respectively in search space. Therefore, the ratio of the number of leaders and followers 
is extremely important for the performance of algorithm. The equation for the proportional 
model I  is as follows: 

1
1
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n L

=
−

                              (5) 
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where 1L  is the number of leaders and n  is the total number of salps. 
3. 5 The SSA-based pseudo code  
 
The pseudo code of the SSA is presented as follows: 
Algorithm1 the Salp Swarm Algorithm 
Initial:  
1: population size n ; number of leaders 1L ; position of the food source F ; maximum number of 

iterations K ; upper and lower bound ub , lb ; number of variables dim ; 
2: objective fitness function E ; 
3: initialize the population of salps ( 1,2,..., )iP i n= =  considering , ( 1,2,...,dim)i iub lb i = ; 
Optimization: 
1:  While ( jk < K ) 
2:   obtain the fitness of each salp 
3:   value of F = position of salp of the highest fitness 
4:   1c  value update via Eq.4 
5:   For each salp ( iP ) 
6:     If ( 1i L≤ ) 
7:       the location update of the leader salp via Eq.1 
8:     Else 
9:       the location update of the follower salp via Eq.3 
10:    End 
11:  End 
12:  modify the locations of salps based on iub  and ilb  
13:  End 
Output: The position of optimal F  

4. SSA-based visual tracking system 

The target (food) is given in the current frame (search space). And a group of candidate 
solutions (leaders and followers) which are randomly generated in the frame by the Salp 
Swarm Algorithm based on the target position of the previous frame. Meanwhile, the 
purpose of SSA-based tracker is to find the optimal candidate solution among all candidate 
solutions. Leaders always guide followers to explore the search space. Based on the above 
statement, a tracking architecture based on SSA tracker is designed as displayed in Fig. 1. 

As shown in Fig. 1, the tracking target patch is first selected in the initial frame. And the 
state vector is initialized and a population of n salps is acquired. This state vector is 

expressed as ( , , )x x y s=  and ( , )x y  represents the location of target based on pixel space 

and s is the scale parameter. Then, an observation model is established to describe the 
appearance and state target/candidate patches. Next, in order to measure similarity between 
target patch and candidate patches, a similarity measure strategy is introduced. After that, the 
best candidate patch is selected by using the salp swarm algorithm. The specific operation of 
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this process is achieved by maximizing the fitness function. The target location is marked by 
the SSA optimizer every frame and this displayed patch always indicates the current optimal 
target. When the last frame is reached, the entire loop ends. 

Begin

Image
Squence

Select the target, initial the state vector and a 
population of N Salps. 

Acquire the fitness function by calculating the 
HOG-based correlation between target patch and 

candidate patches 

Minimize or maximize the similarity function in 
the candidate solution using the Salp swarm 

algorithm 

Choose the optimal candidate solution and obtain 
the corresponding location

Display the frame indicating the location of the 
target

The last 
image?

The first 
image?

Stop

Update the target patch by the motion model.

Yes

No

Yes

No

Target/candidate patches representation by the 
observation model. 

 
Fig. 1. SSA-based tracking architecture 

4.1 The fitness function 

The appearance model is an important factor for visual tracking. The HOG feature could 
capture edges or gradients that are very characteristic of local shape and have the invariance 
to local geometric and photometric transformations. Visual tracking can be expressed as a 
process of locating the “best” position of the target in candidate targets according to the 
fitness value using optimization method. The similarity is computed by: 

( , )( , )
( ) ( )

Cov X YX Y
D X D Y

ρ =                         (6) 

where ( )Cov ⋅  denotes covariance and ( )D ⋅  denotes the variance. X  and Y are the HOG 

feature of the target and candidate samples respectively. The fitness function is shown as 
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follows: 

2 2* ( , )E X Yρ= +                           (7) 

The fitness value affects how to update the positions of the leaders and followers.  
Moreover, the position of the optimal target (food source) is found according to the 

highest fitness value of all salps. 

4.2 Parameter analysis and Adjustment 

Proper parameter’s selection is a vital aspect for algorithms based on swarm optimization. 
The convergence speed and tracking accuracy should be taken into consideration 
simultaneously in the parameter adjustment phase. As the above mentioned, four controlled 
parameters need to be adjusted for this algorithm, namely population size n , maximum 

number of iterations K , coefficient in Eq.1 1c  and proportion between leaders and 

followers I . Before the experiments, let’s first understand the effects of abrupt motion and 
other problems on visual tracking as presented in Fig. 2. 

Fig. 2(a) shows a deer moving quickly along the beach with the slight blur and multiple 
similar targets. Moreover, due to the rapid movement of the deer, its appearance has 
undergone dramatic changes. As presented in Fig. 2(b), the target suffers from a scale 
variation, abrupt motion and in-plane rotation in the “FACE1” video. All those challenging 
factors come into being abundant local distractors that make it possible to lose the target for 
the tracker.  

 

          
(a)                                      (b) 

Fig. 2. The abrupt motion problem for parameter analysis and adjustment: (a) DEER, and (b) 
FACE1 

 
The population size n  is first analyzed and the maximum iterate number K  is set to be 

500. The Euclidean distance between the ground-truth and output position is used to evaluate 
the performance of n . The performance comparison results are presented in Fig. 3 for 
different values of n . Fig. 3(a) shows the Trajectories of moving food with the different n  
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and Fig. 3(b) shows the Tracking accuracy comparisons of different . 
Here, moving food is the output position of every iterate operation. The position of target 

is set to be (400,107). Different values of  can obtain various initial positions and output 
positions as shown in Fig. 3(a). Pentagrams represent the final positions and the red 
trajectory and the green trajectory have an intersection called optimal position. 

 
Fig. 3(a). Trajectories of moving food with the different  

 
Fig. 3(b). Tracking accuracy comparisons of different  

Fig. 3. The parameter analysis of different population size  
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From the Fig. 3(a), we can know that the iterations converge to the position (22, 54) when 
20n = . Evidently, the target is lost. With only 70 iterations, the optimal position has been 

obtained and n  is 150 at this point. When 250n = , the green and blue trajectories 
converge to form a trajectory after the 238th iteration. This indicates that the tracking 
accuracy enhances as the population size increases. However, when the population size 
reaches a certain value, the tracking accuracy is not improved much and it can increase the 
tracker’s running time.  

The Fig. 3(b) is a 2D graphic that shows intuitively the Euclidean distance to the target as 
the frame increases. For 20n = , the red line is stable and the distance is very small before 
30 frames. After 30 frames, the red line has obvious fluctuations and the Euclidean distance 
gets more and more bigger. However, the green line and blue line are both relatively stable 
throughout the tracking process and only a small fluctuation has taken place. Therefore, 
when 150n =  and 250n = , they have a similar tracking precision during the tracking 
process. Considering the accuracy and efficiency, the initial number n  is set to be 150. 

The comparison results corresponding to various values of I  are shown in Table 1. I  
denotes the proportion between number of leaders and number of followers in Eq.5 and it’s 
analyzed by dividing the range of [0,1] into 10 equal parts at intervals of 0.1. The average 
success frames, average success rate and average max bias are tested as the standard 
measurements for two challenging videos. The average max bias is defined as the average of 
maximum bias between output results of tracker and ground-truth of real target. 

 
Table 1. Comparison results of tracking performance for various discovering probability I  
I  

(the 
proportion) 

DEER (with 71 frames) FACE1 (with 380 frames) 
Average 

success frames 
Average success  

rate (%) 
Average 

max bias 
Average 

success frames 
Average success  

rate (%) 
Average 

max bias 

0.1 38 54 303 100 26 323 
0.2 70 99 36 134 35 59 
0.3 47 66 314 90 27 300 
0.4 71 100 25 112 29 438 
0.5 71 100 26 380 100 32 
0.6 71 100 21 252 66 50 
0.7 71 100 27 120 32 65 
0.8 71 100 23 111 29 56 
0.9 71 100 25 134 35 60 

 
We assume the tracker loses the target when DEER’s bias reaches to 30 pixels and 

FACE1’s bias reaches to 40 pixels. Besides, tracking experiments of different parameter I
are conducted and repeated 3 times. Finally, the average of three experiments is as the final 
experimental data for every proportion. From the Table 1, DEER video’s average success 
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rate reaches 100% when I  is 0.4 and subsequently, tracking effect does not fluctuate much. 
However, only if I  is 0.5, tracker doesn’t lose the target and achieves good tracking result 
for FACE1 video. Thus, combining two videos different experimental results, the proportion 
I  is set to be 0.5. 

For SSA tracker, one of the most critical parameters is 1c  due to its adaptive nonlinear 

mechanism. The merit of the parameter is that it enables to enhance balance ability between 

exploration and exploitation in the search space. In fact, the parametric model of 1c  can be 

expressed as 
2( * )

1 *
lb
Lc a e

−
=  in Eq.4. a  denotes the max exploration boundary for leaders. 

b  shows the followers’ exploitation step. Based on the previous discussion, the illustration 
in Fig. 4 is made to show the relationship between tracking accuracy and parameter 
selection. 

 

     
                  (a)                                           (b) 

Fig. 4. The relationship between tracking accuracy and parameter selection 
 

Particularly, the overlap precision (OP), which is computed as the percentage of frames in 
a sequence where the intersection-over-union overlap with the ground-truth bounding box is 
larger than a threshold, is utilized to indicate the tracking accuracy. In order to obtain better 
performance for parameters, the values of a  and b  are fixed separately, and another 
parameter takes a series of values for various video sequences. Given video sequences 
DEER, FACE1 and ZXJ. As shown in Fig. 4, when a  is taken as 1, a series of b  is 

0.3,0.5,0.83,1.0,1.5, 2.0  and when b  is taken as 0.83 , a series of a  is 0.5,1.0,1.5, 2.0, 2.5 . 

Simultaneously, the max values of OP are presented for three sequences. Known by the trend 
of change and the maximum overlap rate, the optimal parameter values are set to be 
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1, 0.83a b= = . And the nonlinear model 
2(0.83* )

1 1*
l
Lc e

−
=  is shown in Fig. 5. 

 

 

Fig. 5. The nonlinear model 
2( * )

1 *
lb
Lc a e

−
=  

5. Experiments and discussions 

We confirm the advantages of SSA-based tracker in visual tracking, especially the abrupt 
motion problem by choosing a bunch of challenging videos and some different 
state-of-the-art methods. These challenging videos are made up of three groups that their 
target displacement is various among the image stream. The first group consists of four 
sequences MAN, MHYANG, FISH and BOY and their motion displacement between frames 
is less than 30 pixels. The second group’s displacement is between 30 and 50 pixels, 
including the HUMAN7, JUMPING, DEER and FACE1 sequences. These sequences used in 
tracking algorithms are obtained on the website http://www.visual-tracking.net. In addition, 
we construct some large displacement motion videos to demonstrate advantages of the 
proposed method. The third group that their motion displacement is more than 70 pixels 
contains ZXJ, BLURBODY, FHC, ZT and BLURFACE. Note that the image sequences are 
listed in Table 2. 
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Table 2. The image sequences 
Video Max displacement X Max displacement Y Max displacement X Total pixels Y Total pixels 

MAN 5 5 3 241 193 

MHYANG 7 7 4 320 240 

FISH 15 15 13 320 240 

BOY 21 21 19 640 480 

HUMAN7 31 31 21 320 240 

JUMPING 36 18 36 352 288 

DEER 38 38 34 704 400 

FACE1 39 22 39 720 576 

ZXJ 70 70 18 568 320 

BLURBODY 76 76 26 640 480 

FHC 188 188 104 1920 1080 

ZT 256 256 149 1920 1080 

BLURFACE 202 202 71 640 480 

 
The proposed tracker is implemented by using MATLAB R2017b. The experiments were 

performed on a PC with Inter(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHZ and 16.0GB RAM.  
Our tracker SSA is compared with 10 classic trackers, including High-Speed Tracking with 
Kernelized Correlation Filters (KCF) [7], Exploiting the Circulant Structure of 
Tracking-by-detection with Kernels (CSK) [25], Accurate Scale Estimation for Robust 
Visual Tracking (DSST) [26], Fast Compressive Tracking (FCT) [27], Fast Tracking via 
Spatio-Temporal Context Learning (STC) [28], Least soft-threshold squares tracking (LSST) 
[29], Context-Aware Correlation Filter Tracking (CACF) [30], Examples of Adaptive 
MCMC (AMCMC) [31], Wang-landau monte carlo-based tracking methods for abrupt 
motions (AWLMC) [32] and Enable Scale and Aspect Ratio Adaptability in Visual Tracking 
with Detection Proposals (KCFDP) [33]. At the same time, in order to ensure the consistency 
of the experimental results, the values of the parameters taken by our tracker are consistent 
in all experiments. 
 

5.1 Algorithms analysis 

Generally speaking, appearance representation model is designed depending on the 
challenging problem that the tracker is confronted with. So, it is important to elect 
appropriate target representation method for different algorithms. This section analyzes the 
different representation methods of other algorithms for the target. 

CSK is mainly proposed to introduce circulant matrices into Correlation filter (CF)-based 
target tracking. The candidate targets are from the dense sampling in a window. Then the 
max response is used to locate the tracked object. CSK represent the target using the 
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gray-based method, which makes dense sampling easily. KCF is an improvement on CSK. It 
efficiently incorporates thousands of negative samples from the target’s environment and 
replaces pixels with the Histogram of Oriented Gradient (HOG) features, obtaining great 
tracking performance. DSST adopts the same target representation method as KCF. But, 
DSST can adapt the scale variation. To improve precision, KCFDP uses the combination of 
HOG, intensity, and color name (CN) because of introducing the regional proposals into the 
detection to induce more flexibility of candidate patches. STC and CACF adopt the 
Spatio-Temporal context to represent the target, which constructs the relation between the 
target and its surrounding regions. The relation often keeps stable in image sequences. So, 
the context can better represent the tracking target. In FCT and LSST, target is represented 
by sparse theory, which can handle the partial occlusion problem in visual tracking.  
AMCMC and AWLMC conduct target tracking based on improved Monte Carlo sampling 
method. The density-of-states of the candidate regions are estimated to guide tracker for 
adapting abrupt motion. Since color features have little dependence on the size, direction and 
perspective of the image itself, the two methods obtain a better tracking performance using 
region color feature. 

5.2 Qualitative analysis 

5.2.1 The smooth motion group 
In the smooth motion group, we know that our tracker works well in Fig. 6. In the MAN 

image sequence (a), only CSK tracking fails at frame #27. However, all the trackers have 
similar performance except for CSK, AWLMC and AMCMC at frames #33, #93 and #107. 
In the MHYANG image sequence (b), nearly all trackers can catch up with the target 
successfully but FCT. For the FISH sequence presented in Fig. 6 (c), there is almost no 
abrupt motion in the target except for obvious changes in illumination at frame #157. Only 
CSK, AWLMC and AMCMC have bad performance. And they also have similar 
performance at frame #288, #360. However, AWLMC and AMCMC obtain better 
performance due to the advantage of sampling mechanism at frame #468. For the Boy 
sequence presented in Fig. 6 (d), the sudden movement of the camera is caused because of 
the shaking camera. However, due to the motion uncertainty and the drastic appearance 
change, the sudden movement poses a great challenge to the tracker. What’s more, the scale 
variation is also very severe due to the movement of the boy. Firstly, LSST fails at frame 
#329. Then, the target is lost in the CSK, AWLMC and STC methods at frame #490 and 
#540. There is slight drift at frame # 580 in FCT. DSST, KCF, CACF, AMCMC, KCFDP and 
our tracker complete the whole video sequence well. In other words, our algorithm basically 
presents a more stable result.  
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Fig. 6. The tracking results with smooth motion 

 
5.2.2 The slight abrupt motion group 

To further test the reliability of our tracker, the motion displacement continues to be 
expanded. For the HUMAN7 sequence presented in Fig. 7 (a), the camera shakes violently 
at frame #117. CACF, AMCMC and our tracker present the better tracking effect in the 
video sequences, while others all lose the target. In JUMPING sequences that has the 
motion displacement of 36 pixels as shown in Fig. 7 (b), the motion blur occurs due to the 
man’s jumping or the camera defocus. Under the circumstances, CSK, DSST, FCT, KCF, 
STC, AMCMC, AWLMC and KCFDP lose the target unfortunately before the frame #96. 
However, our tracker has a better performance and recovers tracking quickly. At the same 
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time, AMCMC and AWLMC recover the target due to the sampling mechanism and our 
method can compete with LSST. The three video named DEER is presented in Fig. 7 (c) 
and it experiences the abrupt motion, motion blur and multiple similar targets. Besides, 
these challenging factors are also very prominent. At frame #28, DSST, KCF, and STC all 
lose the object. They cannot complete the video since they are not able to track on several 
frames. On the whole, CSK and our method obtained the best results. For the FACE1 video 
as shown in Fig. 7 (d), the scale changes happen in image frames. CSK and LSST lose the 
tracking target at frame #210 and #273. And LSST also loses the target at frame 353. 
Interestingly, AWLMC and AMCMC lose the target at frame #99. However, because the 
special sampling mechanism make them track the target again at other frames. 

(a) 

 
(b) 

 
(c) 

 
(d) 

 

 
Fig. 7. The tracking results with slight abrupt motion 
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5.2.3 The large abrupt motion group 
We continue to enhance the motion displacement. And we choose ZXJ, BLURBODY, 

FHC, BLURFACE and ZT image streams, which their maximal motion displacements are 70, 
76, 188, 202 and 256 pixels respectively. Besides, these videos have something challenging 
in common such as abrupt motion or fast motion. For the ZXJ video as shown in Fig. 8 (a), 
only LSST, CACF, AMCMC and our tracker obtain a great performance. From frame #15 to 
frame #102, more and more trackers lose their targets as the degree of abrupt movement 
increases. Therefore, our method acquires the better performance for the problem of abrupt 
motion. In the Fig. 8 (b), due to the existence of the fast motion and the fuzzy factor that it 
brings, although most trackers can locate the target successfully before the frame #119, only 
AWLMC, AMCMC and our tracker still obtain better performance at frame #302. For the 
FHC video as presented in Fig. 8 (c), at frame #70, our method and CACF get a better 
tracking result but other methods either lose the target or have a certain offset. Such 
performance is duo to the existence of a larger motion displacement at frame #70. In the 
BLURFACE video sequence as shown Fig.8 (d), we utilize a violent way that we remove 
some images in the sequence to design the problem about the frame dropping. At the same 
time, the sequence has not only the abrupt motion but also severe motion blur. Only our 
method and AWLMC complete perfectly the whole image sequence by the contrast 
experiments at frame #310. For the ZT video as shown in Fig. 8 (e), DSST, CACF, AMCMC, 
AWLMC and our tracker have a better performance than other methods at frame #108. But 
AMCMC and AWLMC have a certain drift at that frame. 

 
(a) 

 
(b) 

  
(c) 
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(d) 

 
(e) 

 

 
Fig. 8. The tracking results with large abrupt motion 

 
5.3 Quantitative analysis 

In this paper, our tracking results are estimated by using distance precision (DP), overlap 
precision (OP) and center location error (CLE) in [34]. DP is the relative number of frames 
whose center location error is less than a certain threshold in the sequence.  

                             ( )N threshDP
N

=                            (8) 

where N is the total frame in a video, N (thresh) denotes the number of frames with CLE 
under a threshold. And the DP value is set to a threshold of 50 pixels. OP is defined as the 

percentage of frames whose bounding box overlap above a threshold [0,1]t∈ . The OP 

equation is as follows: 

t t

t t

G T
OP

G T
∩

=
∪

                             (9) 

where tT  is the track region (e.g., bounding box) and tG  is the ground-truth. ∩  and ∪  

represent the intersection and union of two regions, •  denotes the number of pixels in the 

region and t is the frame number. We set the threshold to be 0.5*CLE and CLE is computed as 
the average Euclidean distance between the ground-truth and tracking results. 
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Table 3. Average overlap rate 
Sequences SSA CSK DSST FCT KCF STC LSST CACF AMCMC AWLMC KCFDP 

MAN 0.78 0.03 0.84 0.71 0.84 0.83 0.79 0.84 0.13 0.12 0.79 
MHYANG 0.76 0.80 0.81 0.59 0.80 0.69 0.78 0.78 0.59 0.62 0.74 
FISH 0.83 0.21 0.80 0.66 0.84 0.58 0.63 0.83 0.20 0.26 0.85 
BOY 0.75 0.65 0.84 0.60 0.77 0.55 0.36 0.79 0.70 0.38 0.77 
HUMAN7 0.48 0.34 0.36 0.28 0.28 0.28 0.30 0.49 0.53 0.36 0.38 
JUMPING 0.70 0.05 0.14 0.20 0.27 0.07 0.60 0.50 0.32 0.05 0.17 
DEER 0.75 0.75 0.64 0.66 0.62 0.04 0.71 0.63 0.51 0.38 0.45 
FACE1 0.68 0.33 0.79 0.63 0.72 0.65 0.26 0.72 0.61 0.53 0.74 
ZXJ 0.84 0.49 0.48 0.45 0.45 0.46 0.79 0.83 0.76 0.61 0.45 
BLURBODY 0.64 0.39 0.46 0.44 0.44 0.16 0.07 0.50 0.54 0.55 0.51 
FHC 0.78 0.20 0.22 0.26 0.28 0.20 0.28 0.78 0.56 0.54 0.72 
BLURFACE 0.83 0.51 0.53 0.23 0.51 0.48 0.30 0.51 0.79 0.65 0.59 
ZT 0.85 0.66 0.65 0.09 0.59 0.35 0.09 0.84 0.69 0.60 0.45 
Average 0.74 0.42 0.58 0.45 0.57 0.41 0.46 0.69 0.53 0.43 0.58 

 
Table 4. Average center error rate 

Sequences SSA CSK DSST FCT KCF STC LSST CACF AMCMC AWLMC KCFDP 

MAN 3 78 2 4 2 2 2 2 63 66 2 
MHYANG 6 4 2 15 4 4 3 7 13 13 4 
FISH 5 41 4 12 4 5 4 4 50 37 4 
BOY 4 20 2 7 3 26 59 2 12 33 2 
HUMAN7 6 18 26 41 48 33 45 6 12 25 44 
JUMPING 5 86 37 37 26 67 6 34 42 129 40 
DEER 5 5 17 11 21 510 7 23 26 62 76 
FACE1 8 100 5 12 6 7 184 5 21 25 6 
ZXJ 5 190 21 27 88 24 5 5 6 11 73 
BLURBODY 15 73 91 41 68 148 209 34 32 35 105 
FHC 23 578 616 371 365 576 392 23 48 55 26 
BLURFACE 13 1574 75 116 85 90 162 112 13 17 33 
ZT 16 54 54 642 128 100 685 16 30 47 92 
Average 8.7 216.9 73.2 102.8 65.3 122.3 135.6 21.0 28.3 42.8 39.1 

 
Table 3 and Table 4 illustrate a per-sequence comparison results of our method with CSK, 

DSST, FCT, KCF, STC, LSST, CACF, AMCMC, AWLMC and KCFDP methods. Table 3 
shows the average overlap rate and Table 4 refers to the average center error rate. And we 
marked the two best results in every video sequence with red and green. In the tables, the 
averages show that our proposed tracking method performance is better than others when it 
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comes to the problem of the larger motion displacement in consecutive images. For example, 
we can evidently know that our tracker ranks first in the large abrupt motion group including 
ZXJ, BLURBODY, FHC, BLURFACE and ZT videos. And our tracker also obtains 
relatively good results in the slight abrupt motion grouping including HUMAN7, JUMPING, 
DEER and FACE1 videos. 

 

 

 
Fig. 9. The average precision of success plots 
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Fig. 10. The average precision of success plots 

 
Fig. 9 and Fig. 10 show the DP and OP of 13 different videos, respectively. We use the 

form of “line chart” to better analyze the experimental results. It is clearly seen in the line 
charts that our tracker performs much better than 10 other trackers when meeting a larger 
motion displacement. All in all, compared with 10 trackers, the proposed method has a 
greater advantage from table formats and line charts for the problem of abrupt motion. 

6. Conclusion 

In this paper, for dealing with the problem of abrupt motion, a novel nature-inspired 
optimizer is proposed and integrated into the visual tracking framework. Visual tracking is 
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expressed as a process of locating the optimal target by salp chains in the images stream. The 
parameters analysis and adjustment of the SSA in the tracking framework are discussed. To 
confirm the tracking effect of the proposed tracker, comparative experiments of qualitative 
and quantitative analysis of the SSA-based tracking algorithm with ten classic trackers, 
namely, CSK, DSST, FCT, KCF, STC, LSST, CACF, AMCMC, AWLMC and KCFDP are 
conducted. Extensive comparative results show that the SSA-based tracker is better than 
others, especially for the target with abrupt motion. According to the author’s knowledge, the 
SSA-based tracking method is first introduced into a visual tracking system. Choosing the 
current popular convolutional neural network (CNN) architecture to solve the visual tracking 
problem will be the focus of our future work. 
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